On Vertices and Facets of Combinatorial 2-Level Polytopes
نویسندگان
چکیده
2-level polytopes naturally appear in several areas of pure and applied mathematics, including combinatorial optimization, polyhedral combinatorics, communication complexity, and statistics. In this paper, we present a study of some 2-level polytopes arising in combinatorial settings. Our first contribution is proving that f0(P )fd−1(P ) ≤ d2 for a large collection of families of such polytopes P . Here f0(P ) (resp. fd−1(P )) is the number of vertices (resp. facets) of P , and d is its dimension. Whether this holds for all 2-level polytopes was asked in [7], and experimental results from [16] showed it true for d ≤ 7. The key to most of our proofs is a deeper understanding of the relations among those polytopes and their underlying combinatorial structures. This leads to a number of results that we believe to be of independent interest: a trade-off formula for the number of cliques and stable sets in a graph; a description of stable matching polytopes as affine projections of certain order polytopes; and a linear-size description of the base polytope of matroids that are 2-level in terms of cuts of an associated tree.
منابع مشابه
Extension complexity of polytopes with few vertices or facets
We study the extension complexity of polytopes with few vertices or facets. On the one hand, we provide a complete classification of d-polytopes with at most d + 4 vertices according to their extension complexity: Out of the super-exponentially many d-polytopes with d+4 vertices, all have extension complexity d+ 4 except for some families of size θ(d). On the other hand, we show that generic re...
متن کاملDecomposition and Parallelization Techniques for Enumerating the Facets of 0/1-polytopes
A convex polytope can either be described as convex hull of vertices or as solution set of a nite number of linear inequalities and equations. Whereas both representations are equivalent from a theoretical point of view, they are not when optimization problems over the polytope have to be solved. Moreover, it is a challenging task in practical computation to convert one description into the oth...
متن کاملOn Gale and braxial polytopes
Cyclic polytopes are characterized as simplicial polytopes satisfying Gale’s evenness condition (a combinatorial condition on facets relative to a fixed ordering of the vertices). Periodically-cyclic polytopes are polytopes for which certain subpolytopes are cyclic. Bisztriczky discovered a class of periodically-cyclic polytopes that also satisfy Gale’s evenness condition. The faces of these po...
متن کاملFace Numbers of 4-Polytopes and 3-Spheres
Steinitz (1906) gave a remarkably simple and explicit description of the set of all f -vectors f(P ) = (f0, f1, f2) of all 3-dimensional convex polytopes. His result also identifies the simple and the simplicial 3-dimensional polytopes as the only extreme cases. Moreover, it can be extended to strongly regular CW 2-spheres (topological objects), and further to Eulerian lattices of length 4 (com...
متن کاملOn the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes
For polytopes P1, P2 ⊂ R we consider the intersection P1 ∩ P2, the convex hull of the union CH(P1 ∪ P2), and the Minkowski sum P1 + P2. For Minkowski sum we prove that enumerating the facets of P1+P2 is NPhard if P1 and P2 are specified by facets, or if P1 is specified by vertices and P2 is a polyhedral cone specified by facets. For intersection we prove that computing the facets or the vertice...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016